metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichloridobis(2-chlorobenzyl)tin(IV)

Kong Mun Lo and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 13 July 2010; accepted 14 July 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.027; wR factor = 0.073; data-to-parameter ratio = 20.3.

Molecules of the title compound, $[Sn(C_7H_6Cl)_2Cl_2]$, lie on a twofold rotation axis which passes through the Sn atom. The Sn^{IV} atom exists in a distorted tetrahedral geometry. Adjacent molecules are linked by weak Sn···Cl contacts [3.703 (1) Å], forming a linear chain motif extending along the *b* axis.

Related literature

For the synthesis of the title compound, see: Sisido *et al.* (1961). For the crystal structure of dichloridobis(2-fluoro-benzyl)tin(IV), see: Yin & Gao (2006).

Experimental

Crystal data [Sn(C₇H₆Cl)₂Cl₂]

 $M_r = 440.73$

Monoclinic, C2/c a = 26.0750 (13) Å b = 4.7757 (2) Å c = 13.3389 (7) Å $\beta = 112.1538$ (5)° V = 1538.42 (13) Å³

Data collection

Bruker SMART APEX	8736 measured reflections
diffractometer	1767 independent reflections
Absorption correction: multi-scan	1674 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.029$
$T_{\min} = 0.455, \ T_{\max} = 0.800$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.027 & \text{87 parameters} \\ wR(F^2) = 0.073 & \text{H-atom parameters constrained} \\ S = 1.07 & \Delta \rho_{\max} = 2.12 \text{ e } \text{\AA}^{-3} \\ 1767 \text{ reflections} & \Delta \rho_{\min} = -1.03 \text{ e } \text{\AA}^{-3} \end{array}$

Z = 4

Mo $K\alpha$ radiation

 $0.40 \times 0.10 \times 0.10 \ \mathrm{mm}$

 $\mu = 2.34 \text{ mm}^{-1}$

T = 100 K

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the University of Malaya (RG020/09AFR) for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5298).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc. 83, 538-541.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yin, H.-D. & Gao, Z.-J. (2006). Huaxue Shiji, 28, 39-40.

supplementary materials

Acta Cryst. (2010). E66, m966 [doi:10.1107/S1600536810028072]

Dichloridobis(2-chlorobenzyl)tin(IV)

K. M. Lo and S. W. Ng

Comment

Diorganotin(IV) dichlorides have the tin centres in a tetrahedral environment but the coordination number can raise by tin–chlorine bridging; the bridging interaction can be regarded as a formal coordination bond if the distance is sufficiently short. In di(2-chlorobenzyl)tin dichloride (Scheme I, Fig. 1), as the interaction is 3.703 (1) Å, the geometry is better interpreted as being tetrahedral. The compound is isostructural with the fluorine analog (Yin & Gao, 2006).

Experimental

The compound was synthesized by the reaction of metallic tin with 2-benzyl chloride (Sisido *et al.*, 1961), and crystals were obtained by recrystallization from chloroform.

Refinement

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.99 Å) and included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. In the final difference Fourier map there is a peak (2.122e/Å³) at 0.96Å from Sn1 and a hole (-1.027e/Å³) at 0.79Å from Sn1.

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of $SnCl_2(C_7H_6Cl)_2$ at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

Dichloridobis(2-chlorobenzyl)tin(IV)

Crystal data	
$[Sn(C_7H_6Cl)_2Cl_2]$	F(000) = 856
$M_r = 440.73$	$D_{\rm x} = 1.903 {\rm Mg} {\rm m}^{-3}$
Monoclinic, C2/c	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2yc	Cell parameters from 7518 reflections
a = 26.0750 (13) Å	$\theta = 3.1 - 28.3^{\circ}$
b = 4.7757 (2) Å	$\mu = 2.34 \text{ mm}^{-1}$
c = 13.3389 (7) Å	T = 100 K
$\beta = 112.1538 (5)^{\circ}$	Block, colorless
$V = 1538.42 (13) \text{ Å}^3$	$0.40 \times 0.10 \times 0.10 \text{ mm}$

Z = 4

Data collection

Bruker SMART APEX diffractometer	1767 independent reflections
Radiation source: fine-focus sealed tube	1674 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.029$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -33 \rightarrow 33$
$T_{\min} = 0.455, T_{\max} = 0.800$	$k = -6 \rightarrow 6$
8736 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.073$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0414P)^2 + 6.0977P]$ where $P = (F_o^2 + 2F_c^2)/3$
1767 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
87 parameters	$\Delta \rho_{max} = 2.12 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -1.03 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Sn1	0.5000	0.53623 (5)	0.7500	0.01430 (10)
Cl1	0.53371 (3)	0.85923 (15)	0.89559 (5)	0.02030 (16)
Cl2	0.33923 (3)	0.48153 (16)	0.55119 (6)	0.02400 (17)
C1	0.42929 (11)	0.3670 (6)	0.7750 (2)	0.0181 (5)
H1A	0.4121	0.2202	0.7202	0.022*
H1B	0.4417	0.2783	0.8473	0.022*
C2	0.38724 (11)	0.5857 (6)	0.7673 (2)	0.0161 (5)
C3	0.38871 (11)	0.7290 (6)	0.8594 (2)	0.0192 (5)
H3	0.4171	0.6866	0.9273	0.023*
C4	0.34985 (13)	0.9316 (7)	0.8546 (3)	0.0237 (6)
H4	0.3516	1.0249	0.9187	0.028*
C5	0.30839 (13)	0.9987 (6)	0.7564 (3)	0.0249 (6)
H5	0.2820	1.1390	0.7531	0.030*
C6	0.30554 (12)	0.8602 (7)	0.6627 (3)	0.0232 (6)
Н6	0.2772	0.9050	0.5950	0.028*
C7	0.34455 (11)	0.6557 (6)	0.6692 (2)	0.0186 (5)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Sn1	0.01278 (15)	0.01420 (15)	0.01702 (15)	0.000	0.00688 (10)	0.000	
Cl1	0.0189 (3)	0.0207 (4)	0.0207 (3)	-0.0001 (2)	0.0067 (2)	-0.0046 (2)	
Cl2	0.0218 (3)	0.0308 (4)	0.0187 (3)	-0.0035 (3)	0.0068 (3)	-0.0029 (3)	
C1	0.0158 (12)	0.0176 (13)	0.0233 (13)	0.0000 (10)	0.0100 (10)	0.0018 (10)	
C2	0.0138 (12)	0.0148 (12)	0.0212 (13)	-0.0009 (9)	0.0084 (10)	0.0020 (10)	
C3	0.0188 (12)	0.0217 (14)	0.0198 (13)	-0.0020 (10)	0.0104 (10)	0.0023 (11)	
C4	0.0258 (15)	0.0219 (15)	0.0304 (15)	-0.0041 (11)	0.0185 (13)	-0.0043 (12)	
C5	0.0184 (14)	0.0220 (14)	0.0406 (18)	0.0019 (10)	0.0182 (13)	0.0013 (12)	
C6	0.0148 (12)	0.0244 (15)	0.0298 (15)	0.0001 (11)	0.0077 (11)	0.0055 (12)	
C7	0.0162 (12)	0.0213 (14)	0.0205 (13)	-0.0025 (10)	0.0093 (10)	-0.0002 (10)	
Geometric para	meters (Å, °)						
Sn1—C1 ⁱ		2.151 (3)	C2—(27	1.40	01 (4)	
Sn1—C1		2.151 (3)	C3—C4		1.385 (4)		
Sn1—Cl1		2.3740 (7)	С3—Н3		0.95	0.9500	
Sn1—Cl1 ⁱ		2.3740 (7)	C4—C5		1.38	1.385 (5)	
Cl2—C7		1.739 (3)	C4—H4		0.9500		
C1—C2		1.489 (4)	C5—C6		1.391 (5)		
C1—H1A		0.9900	С5—Н5		0.9500		
C1—H1B		0.9900	C6—C7		1.38	1.389 (4)	
C2—C3		1.395 (4)	С6—Н6		0.95	0.9500	
C1 ⁱ —Sn1—C1		135.86 (16)	C4—0	С3—С2	121	.7 (3)	
C1 ⁱ —Sn1—Cl1		107.23 (8)	С4—С3—Н3		119.2		
C1—Sn1—Cl1		101.07 (8)	С2—С3—Н3		119.2		
C1 ⁱ —Sn1—Cl1 ⁱ		101.07 (8)	C5—(C4—C3	120	2 (3)	
C1—Sn1—Cl1 ⁱ		107.23 (8)	C5—0	С4—Н4	119.	9	
Cl1—Sn1—Cl1 ⁱ		98.96 (4)	С3—(С4—Н4	119.	9	
C2-C1-Sn1		112.17 (18)	C4—0	С5—С6	119.	8 (3)	
C2—C1—H1A		109.2	C4—C5—H5		120	120.1	
Sn1—C1—H1A		109.2	C6—4	С5—Н5	120	.1	
C2—C1—H1B		109.2	C7—C6—C5		119.	119.2 (3)	
Sn1—C1—H1B		109.2	C7—4	С6—Н6	120	.4	
H1A—C1—H1B		107.9	C5—0	С6—Н6	120	.4	
C3—C2—C7		117.0 (3)	C6—0	С7—С2	122	.1 (3)	
C3—C2—C1		120.5 (2)	C6—0	C7—Cl2	118.	2 (2)	
C7—C2—C1		122.5 (3)	C2—0	C7—Cl2	119.	7 (2)	
Symmetry codes:	(i) $-x+1, y, -z+3/$	2.					

